LOCAL DAMAGE SURVEYS

Doug Speheger
National Weather Service Forecast Office

When we survey

- Office policy
- In general, for Norman:
 - Possible F2 or greater damage
 - Tornado fatality
 - Unusual scientific event
 - Tornado vs. high-end wind event
- National QRT (Quick Response Team)
 - Possible F4/F5 damage

Why we survey

Tornado vs. wind

Figure 9: Scanned image of handwritten notes on a map used during the initial field assessment of Tornado A9. (Image is scanned from materials provided by Greg Stumpf and Jim LaDue)

Learn more...

- Risks

Learn more...

- -Risks
- -Points of Failure

Aerial Surveys

ADVANTAGES:

- Big picture.
- Better continuity between roads and in inaccessible areas.

Aerial Surveys

ADVANTAGES:

- Big picture.
- Better continuity between roads and in inaccessible areas.

Aerial Surveys

ADVANTAGES:

- Big picture.
- Better continuity between roads and in inaccessible areas.

DISADVANTAGES:

- Difficult to find damage
- from weak events.
- Can not rate intensity.
- Not always available.
- Detail depends on vegetation type or building density

Ask questions!

F5 damage to a home in Moore, Cleveland County, Oklahoma, May 3, 1999. Note most debris has been blown away. (Photograph copyright 1999. The Oklahoma Publishing Co.)

Taken from NWS Service Assessment Oklahoma/southern Kansas Tornado Outbreak of May 3, 1999 (page 14).

Ask questions!

F5 damage to a home in Moore, Cleveland County, Oklahoma, May 3, 1999. Note most debris has been blown away. (Photograph copyright 1999. The Oklahoma Publishing Co.)

Taken from NWS Service Assessment Oklahoma/southern Kansas Tornado Outbreak of May 3, 1999 (page 14).

F-scale estimation

- Must look at ALL the evidence
- Variations in *perceived* damage intensity may be the result of change in tornado intensity, or suggestion that perceived intensity may not apply!
- -Depends on available points of reference

F-scale estimation

- Must look at ALL the evidence
- Variations in *perceived* intensity may be the result of change in event intensity, or

or suggestion that percei Alva -Depends on available points of reference PRELIMINARY Tornado Damage Path Approx. 12:50 - 1:25 am, April 18, 2002 Preliminary Rating: F2 WOOD **ML**ambert Scale: - one mile

April 11, 2001 - SE Oklahoma

October 9, 2001 - W Oklahoma

What we can learn

Almost 100 surveyed tornadoes between 1995-2004:

General caveats about surveys

- Depend significantly on number/type of targets
- Not the last word!
 - Also use eyewitnesses, other data sources
- Damage that you see may not be what you think

Non-surveyed tornadoes

For Norman:

- Weigh evidence
- Get as many reports as possible
 - Photos/ videos
 - Compare reports to make sure same tornado
 - Compare times to other reports/radar
 - Newspaper reports of damage/photos
- Plot locations/triangulate
- Compare to radar (not using as verification, but just to make sure it makes some sense)

Doug Speheger

